

Innovative Joint Designed for 84-Inch Raw Water Tunnel Carrier Pipe

Glenn A. Davidenko, P.E.

Northwest Pipe Company, Inc.

Gedas Grazulis, Welding Engineer

National Welding Corporation

Presentation Breakdown

- Manufacturer's Perspective-Presented by Glenn
 Davidenko
- Installation Perspective Presented by Gedas
 Grazulis
- Closing-Presented by Glenn Davidenko
- Q & A-Both Presenters

Project Details-84" Carrier Pipe in 96" Casing

- ~3,900 LF 84" Steel Pipe
- 1/2" Wall Thickness
- **Bare ID-Cement-Lined In-Place**
- **Polyurethane-Coating**
- Working Pressure is Approximately 190' of Head (~83 psi)
- **Butt-Welded Joint was specified**
- Horizontal Routing Mostly Horizontal Curves with
- Radii down to 800'

BUTT-WELDED JOINT PER CONTRACT

Project Issue Developed

- Tunnel Survey indicated Alignment issues at several locations (Tunnel was not were it's supposed to be!)
- Installation Contractor was concerned about placing a 50-foot long pipe in a horizontal curve
- Installation Contractor was concerned about being able to weld the butt-welded joints throughout the tunnel
- Installation Contractor requested a meeting of all parties to discuss.
- Pipe Manufacturer previously received approval to start making 50-Foot Joints and any Change was Cost Prohibitive

Key Decision Makers at Project Meeting

- Attendees were Project Manager, AECOM, from China
- Contractor Project Manager, Obayoshi, from Japan
- Installation Sub-Contractor, National Welding, from Lithuania
- Pipe Manufacturer, Northwest Pipe Company, from India

Outcome from Project Meeting

- Pipe Manufacturer was directed to work with the Installation Sub-Contractor and propose a solution to this issue.
- REPEATING!!
- Pipe Manufacturer WAS directed to work with the Installation Sub-Contractor and propose a solution to this issue.

Pros for Butt-Welded Joints

- Provide one the strongest joint types
- Resists Higher Pressures
- Single Complete Joint Penetration (CJP)Field-Weld

Cons for Butt-Welded Joints

- Higher Cost to Manufacture
- Limited Installation Flexibility
- Single Inside Fillet Weld

Additional Limits By Installation

Sub-Contractor

- Installation Method is Bell Over Spigot
- Maximum Rise in Pipe When Placing Weld Bell Over Spigot is on around 2"
- Clearance between Faying Surfaces of the Assembled Lap-Joint Cannot Exceed 3/16", per AWWA C206
- The Minimum Overlap of the Assembled Lap-Joint is 1", or 3 Times Wall Thickness, or 1-1/2", whichever is greater, per AWWA C206

Next Step for Pipe Manufacturer

Draw on 50+ years of experience in making Integral Joints Using the following Criteria

- Develop a Joint that meets the project requirements (i.e. Pressure, Installation, Flexibility, etc.)
- Develop a Joint that can be consistently manufactured
- Develop a Joint that can be field welded
- Develop a Joint Using Existing Manufacturing Techniques
- THE SOLUTION!

HYBRID LAP-WELDED JOINT

<u>Key Points of the Hybrid-Weld Bell</u> <u>Joint</u>

- This Joint allows Joints to be supplied with Built-In Miters plus the joint can be pulled as necessary while utilizing the Installation Sub-Contractors Techniques
- All Bell Joints were consistently manufactured
- Field Welding occurs at a Single Location

Conclusions

About Hybrid Lap-Welded Joint

- Met all Design Requirements from the Engineer, Contractor, Installation Sub-Contractor and Pipe Manufacturer
- Joints Handled all Horizontal Curved Area with no Additional Fit-Up
- Since all Required Joint Deflections were Cut Into Bell Joints Exactly, very little Joint Pulling Was Reported
- The Hybrid-Lap Welded Joint Provided a Winning Solution for This Installation

Gedas Grazulis

National Welding Corporation-Installation Perspective

Pre-Installation Planning

Commencement of Installation

Fitting and Welding Operations

Pre-Installation Planning

Invert leveled with concrete

•Tunnel Rail re-installed

Pipe elevation determined
 from top of rail height

•Cradle style pipe carrier design

Pipe Carrier Requirements

•Transportation of pipe through tunnel

Pipe Clocking

•Lifting and side shift of pipe

•Protecting pipe coating from damage

Transportation

Problems:

It's not a matter of if there will be, but of when they will they occur??

Installation Tools

Pipe Bracing

Welding Operations

•FCAW Flux Cored Arc Welding

Inverter style welding machines

CLOSING

- OWNER and ENGINEER turned over the solution to the Subject Matter Experts (SME) in Their Fields to Work Out the Solution to this Issue. We the Engineer, Contractor, Installation Sub-Contractor and Pipe Manufacturer.
- THE SOLUTION ULTIMATELY WAS THE ENGINEERS AND OWNERS TO ACCEPT, WHICH THEY DID.
- The Team-Approach Solved the Issue and the Team-Approach worked on other Project Issues that Developed.

QUESTIONS???

Glenn A. Davidenko, P.E.

Northwest Pipe Company, Inc.

Gedas Grazulis, Welding Engineer National Welding Corporation

